SRI CHAITANYA EDUCATIONAL INSTITIUTIONS - ALL INDIA

INMO (Indian National Mathematical Olympiad) - Solutions - 2024

1. In triangle ABC with $\mathrm{CA}=\mathrm{CB}$, point E lies on the circum circle of ABC such that ECB 90 . The line through E parallel to CB intersects CA in F and AB in G. Prove that the centre of the circum circle of triangle EGB lies on the circum circle of triangle ECF.

Solution:

Let C_{1} be the circumcentre of ECF , then $\mathrm{C}_{1} \mathrm{E} \quad \mathrm{C}_{1} \mathrm{~F} \quad \mathrm{C}_{1} \mathrm{C}$.
Let E^{\prime} be the reflection of E w.r.t C_{1}.
We have $\mathrm{AF}=\mathrm{GF}$
OC is angular bisector of C (as ABC is isosceles)
$\begin{array}{lll}\text { OCE } & 90 & \overline{2}\end{array}$
OEC
$90 \quad \overline{2}$
COE
CAE $\overline{2}$

$$
\mathrm{AF}=\mathrm{FE}, \mathrm{AF}=\mathrm{GF} \quad \mathrm{GF}=\mathrm{FE}
$$

Now, $\mathrm{GF}=\mathrm{FE}, \mathrm{EC}_{1} \quad \mathrm{C}_{1} \mathrm{E}^{l} \& \quad \mathrm{GEE}^{!}$is common
$\mathrm{FEC}_{1} \quad \mathrm{GEE}^{\mid} \quad \mathrm{EE}^{\dagger} \quad \mathrm{E}^{\prime} G$
From the similarity, we have $\quad \mathrm{EGE}^{\dagger} \quad \mathrm{BGE}^{\mid} \quad 90 \quad \overline{2}$

```
BE | GE EE
```

This means E is the circumcentre of BGE
But E^{l} is also the reflection of E about C_{1}, and hence E^{\dagger} lies on the circumcircle of FEC.

Alternative solution :

Given that $\mathrm{BC} \quad \mathrm{EC}$ and $\mathrm{GE} \| \mathrm{BC}$

$$
\text { BCE CEG } 90
$$

CA CB
BAC CBA
But as ABCE is cyclic, we have
BEC BAC \& BAC BCE 180
BAC $90 \quad 180$
BAC 90
FAE 90
As GE \| BC, AGE ABC
AEG 90
AFE 2 AGE
But as AGE is right angled and F lies o hypotenuse, we have E is circumcentre of AGE GF FE

Draw FD GE D lies on the circle
Let $\mathrm{O}=$ mid point of BE
As $\mathrm{BCE}=90^{\circ}, \mathrm{BE}$ is diameter and O is centre of ABC
BOC 2 BAC 2
COE 1802
CFE AFG $180 \quad 2$
But CFE COE 1802
So, \square COFE is cyclic and \square DOEC is cyclic
DOE DCE 180
DOE 90
So FD is perpendicular bisector of GE
And DO is perpendicular bisector of BE
D is circumcentre of BGE lies on circumcentre of CFE
2. All the squares of a 2024×2024 board are coloured white. In one move Mohit can select one row or column whose every square is white, choose exactly 1000 squares in this row or column, and colour all of them red. Find the maximum number of squares that Mohit can colour red in a finite number of moves

Solution:
Mohit cannot select any row or column because it is clearly mentioned in the question that all the squares should be white. Without loss of generality assume Mohit first selected the rows. Then he should select 2024 rows. Now Mohit can select $\leq 2024-1000=1024$ columns (Mohit can select 1024 columns if all rows are identically coloured)
\therefore Mohit can choose a maximum of $2024+1024=3048$ (including rows and columns)
Therefore Mohit selected $3048 \times 100=3048000$ squares and coloured them. (Below is an example)

3. Let ' p ' be an odd prime number and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be integers so that the integers
$\mathrm{a}^{2023}+\mathrm{b}^{2023}, \mathrm{~b}^{2024}+\mathrm{c}^{2024}, \mathrm{c}^{2025}+\mathrm{a}^{2025}$
are all divisible by ' p '. Prove that ' p ' divides each of a, b and c.

Solution:

Let $\mathrm{p} \times \mathrm{a}$, then $\mathrm{p} \times \mathrm{b}$ and $\mathrm{p} \times \mathrm{c}$ (trivial)
From question,
$\mathrm{b}^{2023} \equiv-\mathrm{a}^{2023}(\bmod \mathrm{p}) \rightarrow(1)$
$\mathrm{c}^{2024} \equiv-\mathrm{b}^{2024}(\bmod \mathrm{p}) \rightarrow(2)$
$\mathrm{c}^{2025} \equiv-\mathrm{a}^{2025}(\bmod \mathrm{p}) \rightarrow(3)$
Multiply (1) by ' b ' and substitute in (2)
$\mathrm{c}^{2024} \equiv \mathrm{a}^{2023} \mathrm{~b}(\bmod \mathrm{p})$
Multiply by ' c ' and substitute in (3)
$\mathrm{a}^{2} \equiv-\mathrm{bc}(\bmod \mathrm{p})$
From $1^{\text {st }}$ equation,
$\mathrm{a}\left(\mathrm{a}^{2}\right)^{1011} \equiv-\mathrm{b}^{2023}(\bmod \mathrm{p})$
$\mathrm{ac}^{1011} \equiv \mathrm{~b}^{1012}(\bmod \mathrm{p}) \quad[$ As p won't divide b$]$
$\mathrm{a}^{2} \mathrm{c}^{1011} \equiv \mathrm{ab}^{1012}(\bmod \mathrm{p})$
$c^{1012} \equiv-\mathrm{ab}^{1011}(\bmod \mathrm{p})$
$c^{2024} \equiv \mathrm{a}^{2} \mathrm{~b}^{2022}$
$-a^{2025} \equiv a^{2} b^{2022} c \quad$ [Using $3^{\text {rd }}$ equation]
$-\mathrm{a}^{2023} \equiv \mathrm{~b}^{2022} \mathrm{c}$
$\mathrm{b}^{2023} \equiv \mathrm{~b}^{2023} \mathrm{c} \quad$ [Using $2^{\text {nd }}$ equation]
$b \equiv c(\bmod p)$
So, using $2^{\text {nd }}$ equation,
$c^{2024} \equiv-c^{2024}(\bmod p)$
So, p / b and $\mathrm{p} / \mathrm{c} \Rightarrow \mathrm{p} / \mathrm{a}$

Contradiction

So, ' p ' has to divide each of $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
4. A finite set S of positive integers is called cardinal if S contains the integer $|S|$, where $|S|$ denotes the number of distinct elements in S . Let f be a function from the set of positive integers to itself, such that for any cardinal set S , the set $f(S)$ is also cardinal. Here $f(S)$ denotes the set of all integers that can be expressed as $f(a)$ for some a in S. Find all possible values of $f(2024)$.

Note: As an example, $\{1,3,5\}$ is a cardinal set because it has exactly 3 distinct elements, and the set contains 3.

Solution: Considering the singleton cardinal set $\{1\}$. We see that $f(1)=1$. The cardinal set $\{1,2\}$ gets mapped to $\{1, f(2)\}$, so $f(2)$ must be 2 or 1 .
Case 1. Suppose $f(2)=1$. Now $\{2,2024\}$ is a cardinal set, and therefore so is $\{1, f(2024)\}$. This means $f(2024)$ is 1 or 2 .
Case 2. Suppose $f(2)=2$. The cardinal set $f(\{1,2,3\})=\{1,2, f(3)\}$ shows that $f(3) \in\{1,2,3\}$, but the cardinal set $f(\{2,3\})=\{2, f(3)\}$ proves $f(3)$ cannot be 2 . Thus there are two sub - cases.
Subcase (i). $f(3)=1$. Then the set $\{1,3,2024\}$ is cardinal, hence so is $\{1, f(2024)\}$, implying, as before, $f(2024) \in\{1,2\}$.
Subcase (ii). $f(3)=3$. In this case, we show via induction that $f(n)=n$ for all $n \in \mathbb{N}$.
The base cases $n=1,2,3$ are already known. Now consider $n \geq 4$, and assume $f(k)=k$ for all $k<n$. Consider the cardinal $f(\{1,2, \ldots \ldots, n\})=\{1,2, \ldots, n-1, f(n)\}$ which implies $f(n) \in\{1,2, \ldots ., n\}$ However, consider the $n-1$ element cardinal set $\{1,2, \ldots \ldots, n\} \backslash\{n-2\}$. For its image to be cardinal $f(n)$ cannot equal any number in $\{1,2, \ldots, n-1\} \backslash\{n-2\}$; else its cardinality would be $n-2$, which isn't in the set. So $f(n) \in\{n-2, n\}$.
Finally, consider the $n-2$ element set $\{1,2, \ldots, n\} \backslash\{n-1, n-3\}$. If $f(n)=n-2$, its image would only have $n-3$ and the induction is complete. In particular, $f(2024)=2024$.
Thus the only possible values of $f(2024)$ are 1, 2 and 2024.
5. Let points A_{1}, A_{2}, and A_{3} lie on the circle Γ in counter - clockwise order, and let P be a point in the same plane. For $i \in\{1,2,3\}$, let T_{i} denote the counter - clockwise rotation of the plane centred at A_{i}, where the angle of the rotation is equal to the angle at vertex A_{i} in $\Delta A_{1} A_{2} A_{3}$. Further, define P_{i} to be the point $T_{i+2}\left(T_{i}\left(T_{i}+1(P)\right)\right)$, where indices are taken modulo 3 (i.e., $T_{4}=T_{1}$ and $\left.T_{5}=T_{2}\right)$.

Prove that the radius of the circumcircle of $\Delta P_{1} P_{2} P_{3}$ is at most the radius of Γ.
Solution: Fix an index $i \in\{1,2,3\}$. Let D_{1}, D_{2}, D_{3} be the points of tangency of the incircle of triangle $\triangle A_{1} A_{2} A_{3}$ with its sides $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ respectively.

The key observation is that given a line ℓ in the plane, the image of ℓ under the mapping $T_{i+2}\left(T_{i}\left(T_{i+1}(\ell)\right)\right)$ is a line parallel to ℓ. Indeed, ℓ is rotated thrice by angles equal to the angles of $\triangle A_{1} A_{2} A_{3}$, and the composition of these rotations induces a half - turn and translation on ℓ as the angles of $\Delta A_{1} A_{2} A_{3}$ add to 180°. Since D_{i} is a fixed point of this transformation (by the chain of maps $D_{i} \xrightarrow{T_{i+1}} D_{i+2} \xrightarrow{T_{i}} D_{i+1} \xrightarrow{T_{i+2}} D_{i}$), we conclude that the line $\overline{P D_{i}}$ maps to the line $\overline{P_{i} D_{i}}$. But the two lines are parallel and both of them pass through D_{i} hence they must coincide, so D_{i} lies on $\overline{P P}_{i}$. Further, each rotation preserves distances, hence P_{i} is the reflection of P in D_{i}.

In other words, the triangle $P_{1} P_{2} P_{3}$ is obtained by applying a homothety with ratio 2 and centre P to the triangle $D_{1} D_{2} D_{3}$. Thus, the radius of the circumcircle of $\Delta P_{1} P_{2} P_{3}$ is twice the radius of the circumcircle of $\Delta D_{1} D_{2} D_{3}$. i.e., twice the radius of the incircle of $\Delta A_{1} A_{2} A_{3}$, which is known to be at most the radius of the circumcircle Γ.
Remark. The conclusion used the fact that in a triangle ABC with incentre I and in radius r , and circumcentre O and circumradius R , we have the inequality $R \geq 2 r$. This is called Euler's Inequality. The standard proof is that $0 \leq O I^{2}=R^{2}-\operatorname{Pow}(I,(O, R))=R^{2}-2 R r$. The last equality holds as Pow $(\mathrm{I},(\mathrm{O}, \mathrm{R}))=\mathrm{IA}$. IM where M is the midpoint of minor arc $\widehat{B C}$ in the circumcircle of ABC , and because $I A=\frac{r}{\sin \frac{A}{2}}$ and $I M=M B=\frac{a}{2 \cos \frac{A}{2}}=\frac{2 R \sin A}{2 \cos \frac{A}{2}}=2 R \sin \frac{A}{2}$ by using "the trident lemma" and the double - angle sine formulas.

6. For each positive integer $n \geq 3$, define A_{n} and B_{n} as

$$
\begin{aligned}
& A_{n}=\sqrt{n^{2}+1}+\sqrt{n^{2}+3}+\cdots+\sqrt{n^{2}+2 n-1}, \\
& B_{n}=\sqrt{n^{2}+2}+\sqrt{n^{2}+4}+\cdots+\sqrt{n^{2}+2 n}
\end{aligned}
$$

Determine all positive integers $\mathrm{n} \geq 3$ for which $\left[\mathrm{A}_{\mathrm{n}}\right]=\left[\mathrm{B}_{\mathrm{n}}\right]$.
Note: For any real number $\mathrm{x},[\mathrm{x}]$ denotes the largest integer N such that $\mathrm{N} \leq \mathrm{x}$.

Solution:

Let $\mathrm{M}=\mathrm{n}^{2}+\frac{1}{2} \mathrm{n}$
Case (i):

$$
\left(B_{n}-A_{n}\right)=\sum_{k=1}^{n}\left(\sqrt{n^{2}+2 k}-\sqrt{n^{2}+2 k-1}\right)=\sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+2 k}+\sqrt{n^{2}+2 k-1}}<\sum_{k=1}^{n} \frac{1}{2 n}=\frac{n}{2 n}=\frac{1}{2}
$$

Case (ii):
$\left(\mathrm{A}_{\mathrm{n}}-\mathrm{n}^{2}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\sqrt{\mathrm{n}^{2}+2 \mathrm{k}-1}-\mathrm{n}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{2 \mathrm{k}-1}{\sqrt{\mathrm{n}^{2}+2 \mathrm{k}-1}+\mathrm{n}}<\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{2 \mathrm{k}-1}{\mathrm{n}+\mathrm{n}}=\frac{\mathrm{n}^{2}}{2 \mathrm{n}}=\frac{\mathrm{n}}{2}$
as $\sum_{\mathrm{k}=1}^{\mathrm{n}}(2 \mathrm{k}-1)=\mathrm{n}^{2}$, proving $\mathrm{A}_{\mathrm{n}}-\mathrm{n}^{2}<\frac{\mathrm{n}}{2}$ or $\mathrm{A}_{\mathrm{n}}<\mathrm{M}$
Similarly,
$\left(\mathrm{B}_{\mathrm{n}}-\mathrm{n}^{2}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\sqrt{\mathrm{n}^{2}+2 \mathrm{k}}-\mathrm{n}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{2 \mathrm{k}}{\sqrt{\mathrm{n}^{2}+2 \mathrm{k}}+\mathrm{n}}>\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{2 \mathrm{k}}{(\mathrm{n}+1)+\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2 \mathrm{n}+1}>\frac{\mathrm{n}}{2}$
as $\sum_{\mathrm{k}=1}^{\mathrm{n}}(2 \mathrm{k})=\mathrm{n}(\mathrm{n}+1)$, so $\mathrm{B}_{\mathrm{n}}-\mathrm{n}^{2}>\frac{\mathrm{n}}{2}$ hence $\mathrm{B}_{\mathrm{n}}>\mathrm{M}$
By Case (ii), we see that A_{n} and B_{n} are positive real numbers containing M between them. When ' n ' is even, M is an integer. This implies $\left[A_{n}\right]<M$, but $\left[B_{n}\right] \geq M$, which means we cannot have $\left[\mathrm{A}_{\mathrm{n}}\right]=\left[\mathrm{B}_{\mathrm{n}}\right]$.
When ' n ' is odd, M is a half-integer, and thus $M-\frac{1}{2}$ and $M+\frac{1}{2}$ are consecutive integers.
So the above two cases imply
$\mathrm{M}-\frac{1}{2}<\mathrm{B}_{\mathrm{n}}-\left(\mathrm{B}_{\mathrm{n}}-\mathrm{A}_{\mathrm{n}}\right)=\mathrm{A}_{\mathrm{n}}<\mathrm{B}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}}+\left(\mathrm{B}_{\mathrm{n}}-\mathrm{A}_{\mathrm{n}}\right)<\mathrm{M}+\frac{1}{2}$
This shows $\left[\mathrm{A}_{\mathrm{n}}\right]=\left[\mathrm{B}_{\mathrm{n}}\right]=\mathrm{M}-\frac{1}{2}$.
Thus, the only integers $n \geq 3$ that satisfy the conditions are the odd numbers and all of them work.

