
 

 
 SRI CHAITANYA EDUCATIONAL 
     INSTITIUTIONS – ALL INDIA 
 

INMO (Indian National Mathematical Olympiad) - Solutions - 2024 
  
1. In triangle ABC with CA = CB, point E lies on the circum circle of ABC such that ECB 90? ? ?. 

The line through E parallel to CB intersects CA in F and AB in G. Prove that the centre of the 

circum circle of triangle EGB lies on the circum circle of triangle ECF. 

Solution: 
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 Let 1C  be the circumcentre of ECF? , then 1 1 1C E C F C C? ? . 

 Let E| be the reflection of E w.r.t 1C . 
 We have AF = GF 
 OC is angular bisector of C? (as ABC?  is isosceles) 

 OCE 90
2
?? ? ? ?  

 OEC 90
2
?? ? ? ?  

 COE? ? ? ?  

 CAE
2
?? ? ?  

 ? AF = FE, AF = GF ? GF = FE 
 Now, GF = FE, |

1 1EC C E?  & |GEE?  is common 

 | | |
1FEC GEE EE E G? ? ? ? ? ?  

 From the similarity, we have | |EGE BGE 90
2
?? ? ? ? ? ? ?  

 | | |BE GE EE? ? ?  
 This means |E  is the circumcentre of BGE?  
 But |E is also the reflection of E about 1C , and hence |E  lies on the circumcircle of FEC? . 
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Alternative solution : 
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 Given that BC EC?  and GE || BC 
 BCE CEG 90? ? ? ? ? ? 
 CA CB? ?  
 BAC CBA? ? ? ? ? ? 
 But as ABCE is cyclic, we have  
 BEC BAC? ? ? ? ?  &  BAC BCE 180? ? ? ? ? 
 BAC 90 180? ? ?? ? 
 BAC 90? ? ? ? 
 FAE 90? ? ? ?  
 As GE || BC, AGE ABC? ? ? ? ? 
 AEG 90? ? ? ? ? 
 AFE 2 2 AGE? ? ? ? ? ?  
 But as  AGE? is right angled and F lies o hypotenuse,  
 we have E is circumcentre of AGE GF FE? ? ?  

 


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 Draw FD? GE ?  D lies on the circle  
 Let O = mid point of BE 
 As BCE? = 90° , BE is diameter and O is centre of ABC?  
 BOC 2 BAC 2? ? ? ? ? ? 
 COE 180 2? ? ? ? ? 
 CFE AFG 180 2? ? ? ? ? ? ? 
 But CFE COE 180 2? ? ? ? ? ? 
 So, COFE  is cyclic and DOEC  is cyclic 
 DOE DCE 180? ? ? ? ? ? 
 DOE 90? ? ?  
 So FD is perpendicular bisector of  GE  
 And DO is perpendicular bisector of BE 
 D is circumcentre of BGE?  lies on circumcentre of CFE?  
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2. All the squares of a 2024 x 2024 board are coloured white. In one move Mohit can select one row 

or column whose every square is white, choose exactly 1000 squares in this row or column, and 

colour all of them red. Find the maximum number of squares that Mohit can colour red in a finite 

number of moves  

Solution:  

 Mohit cannot select any row or column because it is clearly mentioned in the question that all the 

squares should be white. Without loss of generality assume Mohit first selected the rows. Then he 

should select 2024 rows. Now Mohit can select 2024 1000 1024   columns (Mohit can select 

1024 columns if all rows are identically coloured) 

  Mohit can choose a maximum of 2024 + 1024 =3048 (including rows and columns) 

Therefore Mohit selected  3048 100 3048000   squares and coloured them. (Below is an example) 

  

1 2 3 ...... 1000.... 2024

1
2

1000

2024

coloured red

coloured red  
 

3. Let ‘p’ be an odd prime number and a, b, c be integers so that the integers 

 2023 2023 2024 2024 2025 2025a b , b c , c a    

 are all divisible by ‘p’. Prove that ‘p’ divides each of a, b and c. 

Solution: 
 Let p a, then p b and p c    (trivial) 
 From question, 
    2023 2023b a mod p 1    

    2024 2024c b mod p 2    

    2025 2025c a mod p 3    

 Multiply (1) by ‘b’ and substitute in (2) 
  2024 2023c a b mod p  

 Multiply by ‘c’ and substitute in (3) 

  2a bc mod p   

 From 1st equation, 

    10112 2023a a b mod p   

  1011 1012ac b mod p   [As p won’t divide b] 

  2 1011 1012a c ab mod p  
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  1012 1011c ab mod p   

 2024 2 2022c a b  
 2025 2 2022a a b c    [Using 3rd equation] 
 2023 2022a b c   
 2023 2023b b c   [Using 2nd equation] 

  b c mod p  

 So, using 2nd equation, 
  2024 2024c c mod p   

 So, p / b and p / c p / a  
 Contradiction 
 So, ‘p’ has to divide each of a, b, c. 
 
4. A finite set S of positive integers is called cardinal if S contains the integer S , where S  denotes 

 the number of distinct elements in S. Let f  be a function from the set of positive integers to itself, 

 such that for any cardinal set S, the set  f S  is also cardinal. Here  f S  denotes the set of all 

 integers that can be expressed as  f a  for some a  in S. Find all possible values of  2024f . 

 Note: As an example,  1,3,5  is a cardinal set because it has exactly 3 distinct elements, and the set 

 contains 3.        

Solution: Considering the singleton cardinal set  1 . We see that  1 1f  . The cardinal set  1, 2  gets 

 mapped to   1, 2f , so  2f  must be 2 or 1. 

Case 1. Suppose  2 1f  . Now  2,2024  is a cardinal set, and therefore so is   1, 2024f . 

 This means  2024f  is 1 or 2. 

Case 2. Suppose  2 2f  .The cardinal set      1,2,3 1, 2, 3f f  shows that    3 1, 2,3f  , but the 

 cardinal set      2,3 2, 3f f  proves  3f  cannot be 2. Thus there are two sub – cases. 

Subcase (i).  3 1f  . Then the set  1,3, 2024  is cardinal, hence so is   1, 2024f , implying, as before, 

    2024 1, 2f  . 

Subcase (ii).  3 3f  . In this case, we show via induction that  f n n  for all n . 

 The base cases 1, 2,3n   are already known. Now consider 4n  , and assume  f k k  for all 

 k n . Consider the cardinal      1,2,....., 1, 2,..., 1,f n n f n   which implies    1, 2,....,f n n

 However, consider the 1n  element cardinal set    1,2,....., \ 2n n  . For its image to be cardinal 

  f n  cannot equal any number in    1, 2,..., 1 \ 2n n  ; else its cardinality would be 2n  , which 

 isn’t in the set. So    2,f n n n  . 

 Finally, consider the 2n   element set    1, 2,...., \ 1, 3n n n  . If   2f n n  , its image would 

 only have 3n and the induction is complete. In particular,  2024 2024f  . 

 Thus the only possible values of  2024f  are 1, 2 and 2024. 
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5. Let points 1 2 3, ,A A and A lie on the circle  in counter – clockwise order, and let P be a point in the 

same plane. For  1, 2,3 ,i let iT denote the counter – clockwise rotation of the plane centred at ,iA

where the angle of the rotation is equal to the angle at vertex iA in 1 2 3A A A . Further, define iP to be 

the point    2 1 ,i i iT T T P  where indices are taken modulo 3  4 1 5 2. .,i e T T and T T  . 

 Prove that the radius of the circumcircle of 1 2 3PP P  is at most the radius of .    

Solution: Fix an index  1,2,3 .i Let 1 2 3, ,D D D be the points of tangency of the incircle of triangle  

 1 2 3A A A with its sides 2 3 3 1 1 2, ,A A A A A A respectively.  
 The key observation is that given a line  in the plane, the image of   under the mapping 

   2 1i i iT T T   is a line parallel to  . Indeed,   is rotated thrice by angles equal to the angles of 

1 2 3A A A , and the composition of these rotations induces a half – turn and translation on  as the 

angles of 1 2 3A A A add to 180°. Since iD is a fixed point of this transformation (by the chain of 

maps 1 2
2 1

i iiT TT
i i i iD D D D 

    ) , we conclude that the line iPD maps to the line i iPD . 

But the two lines are parallel and both of them pass through iD hence they must coincide, so iD lies 

on iPP . Further, each rotation preserves distances, hence iP is the reflection of P in iD . 

 In other words, the triangle 1 2 3PP P is obtained by applying a homothety with ratio 2 and centre 

P to the triangle 1 2 3D D D . Thus, the radius of the circumcircle of 1 2 3PP P is twice the radius of the 

circumcircle of 1 2 3D D D . i.e., twice the radius of the incircle of 1 2 3A A A , which is known to be at 
most the radius of the circumcircle . 

Remark. The conclusion used the fact that in a triangle ABC with incentre I and in radius r, and  
circumcentre O and circumradius R, we have the inequality 2 .R r This is called Euler’s Inequality. 

The standard proof is that   2 2 20 , , 2 .O I R Pow I O R R Rr     The last equality holds as Pow 

(I, (O, R)) = IA. IM  where M is the midpoint of minor arc BC in the circumcircle of ABC, and 

because 2 sin 2 sin
2sin 2cos 2cos

2 2 2

r a R A AIA and IM M B RA A A     by using “the trident lemma” and 

the double – angle sine formulas.  
 

A1

A2A3

D3

D1

D2
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6. For each positive integer n 3 , define n nA and B  as 

 2 2 2
nA n 1 n 3 n 2n 1        , 

 2 2 2
nB n 2 n 4 n 2n        

 Determine all positive integers n 3  for which    n nA B . 

 Note: For any real number x,  x  denotes the largest integer N such that N x . 

Solution: 

 Let 2 1M n n
2

   

 Case (i): 

    n n n
2 2

n n 2 2
k 1 k 1 k 1

1 1 n 1B A n 2k n 2k 1
2n 2n 2n 2k n 2k 1  

         
   

    

 Case (ii): 

    
2n n n

2 2
n 2

k 1 k 1 k 1

2k 1 2k 1 n nA n n 2k 1 n
n n 2n 2n 2k 1 n  

 
        

  
    

 as  
n

2

k 1

2k 1 n


  , proving 2
n n

nA n or A M
2

    

 Similarly, 

      
 n n n

2 2
n 2

k 1 k 1 k 1

n n 12k 2k nB n n 2k n
n 1 n 2n 1 2n 2k n  


       

   
    

 as    
n

k 1

2k n n 1


  , so 2
n

nB n
2

   hence nB M  

By Case (ii), we see that n nA and B  are positive real numbers containing M between them. When 

‘n’ is even, M is an integer. This implies    n nA M, but B M  , which means we cannot have 

   n nA B . 

When ‘n’ is odd, M is a half-integer, and thus 1 1M and M
2 2

   are consecutive integers. 

So the above two cases imply 

   n n n n n n n n
1 1M B B A A B A B A M
2 2

            

This shows    n n
1A B M
2

   . 

Thus, the only integers n 3  that satisfy the conditions are the odd numbers and all of them work. 
 

 
 
  


